✅ Перевірена відповідь на це питання доступна нижче. Наші рішення, перевірені спільнотою, допомагають краще зрозуміти матеріал.
Question 3 (25 marks)
3.1 Use Table 3.1 to answer the following questions:
Table 3.1
square_footage | num_bedrooms | age | location | price |
800 | 2 | 10 | Urban | 350000 |
1200 | 3 | 5 | Suburban | 245000 |
1500 | 4 | 10 | Urban | 400000 |
1800 | 3 | 20 | Urban | 300000 |
2500 | 4 | 7 | Rural | 200000 |
900 | 2 | 25 | Urban | 250000 |
1100 | 5 | 15 | Suburban | 320000 |
2200 | 4 | 17 | Rural | 280000 |
square_footage is the area of the house in square feet.
num_bedrooms is the number of bedrooms.
age is the age of the house in years.
location is the location of the which is Urban, Suburban or Rural.
price is the cost of the house in ZAR (rand).
Using the following imported libraries:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import LabelEncoder
Each question has a weighting of 5 marks.
(a )Write Python code snippet to load the houses data in a dataframe
(b) Write a Python code snippet to separate independent features/attributes and a target feature (price).
(c) Write a Python code snippet to apply label-encoding (one-hot encoding) to the location column.
(d) Write a Python code snippet to split the dataset into 80% train and 20% test.
(e) Write a Python code snippet to train a linear regression model (using the test dataset) and predict the house price of a house with 2000 square_footage, num_bedrooms: 5, age: 5 and location: Urban.
(a
Отримайте необмежений доступ до відповідей на екзаменаційні питання - встановіть розширення Crowdly зараз!