logo

Crowdly

MACHINE LEARNING 700(2025S1MAL700D)

Шукаєте відповіді та рішення тестів для MACHINE LEARNING 700(2025S1MAL700D)? Перегляньте нашу велику колекцію перевірених відповідей для MACHINE LEARNING 700(2025S1MAL700D) в learning.richfield.ac.za.

Отримайте миттєвий доступ до точних відповідей та детальних пояснень для питань вашого курсу. Наша платформа, створена спільнотою, допомагає студентам досягати успіху!

2..4 You are working on a binary classification problem to predict whether patients have Covid-19 disease (Positive) or not (Negative) using a logistic regression model. After training your model, you obtain the following confusion matrix on the test data:

 

Predicted Positive

Predicted Negative

Actual Positive

40

10

Actual Negative

20

30

Calculate the following performance metrics: accuracy, precision, recall, F1-score, and specificity.(10)

Переглянути це питання

2.3  Using examples, differentiate between model overfitting and underfitting.  Describe in detail FOUR (four) ways to mitigate each of these problems.  (10)

                                                                                                                                       

Переглянути це питання

2.2 Write Python code snippet to show  how to standardize a numeric feature called Age which is part of a dataframe, df using StandardScaler from sklearn.preprocessing (5)

Переглянути це питання

2.1 How can a dataset without the target variable be utilized into supervised learning algorithms?(5)

Переглянути це питання

Question 4 (25 marks)

4.1 Write a pseudo code/ algorithm for the K-means clustering algorithm.(10)

4.2   Explain why accuracy is not always the ideal metric for model evaluation (5)

 

 4.3 Use Table 4.3 to answer the following questions:  

     

     Table 4.3

·         age: Patient age (years).

·         blood_pressure: Systolic blood pressure (mmHg)

·         cholesterol: Serum cholesterol level (mg/dL)

·         has_disease: Binary target indicating if the patient has the disease (1 = yes, 0 = no)

Complete the following code to show a Python code snippet to train the decision tree and logistic regression models for making predictions.

import pandas as pd

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report, confusion_matrix

 

# Load the data in the dataframe

data = {

    "age": [40, 55, 60, 45, 50, 35, 70, 65, 54, 75],

    "blood_pressure": [120, 140, 130, 135, 142, 110, 160, 150, 138, 170],

    "cholesterol": [200, 210, 250, 240, 190, 180, 260, 210, 225, 280],

    "has_disease": [0, 1, 0, 1, 0, 0, 1, 1, 0, 1]

}

df = pd.DataFrame(data)

 

# Split into features (X) and target (y)

X = df[["age", "blood_pressure", "cholesterol"]]

y = df["has_disease"]

 

 

# Dataset split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

 # Code for training the Decision tree and make predictions (5)

………………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………………

# Code for training the Logistic regression  and make predictions                                                 (5)

………………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………………

Переглянути це питання

Question 3 (25 marks)

3.1 Use Table 3.1  to answer the following questions:

Table 3.1

square_footage

num_bedrooms

age

location

price

800

2

10

Urban

350000

1200

3

5

Suburban

245000

1500

4

10

Urban

400000

1800

3

20

Urban

300000

2500

4

7

Rural

200000

900

2

25

Urban

250000

1100

5

15

Suburban

320000

2200

4

17

Rural

280000

square_footage is the area of the house in square feet.

num_bedrooms is the number of bedrooms.

age is the age of the house in years.

location is the location of the which is Urban, Suburban or Rural.

price is the cost of the house in ZAR (rand).

Using the following imported libraries:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score

from sklearn.preprocessing import LabelEncoder

Each question has a weighting of 5 marks.

(a )Write Python code snippet to load the houses data in a dataframe

(b) Write a Python code snippet to separate independent features/attributes and a target feature (price).                                                                                                                   

 

(c) Write a Python code snippet to apply label-encoding (one-hot encoding) to the location column. 

                                                                                                                           

(d) Write a Python code snippet to split the dataset into 80% train and 20% test.

(e) Write a Python code snippet to train a linear regression model (using the test dataset) and predict the house price of a house with 2000 square_footage, num_bedrooms: 5, age: 5 and location:  Urban.                                                                                                                             

(a                                                                                                                               

Переглянути це питання

1.4 Describe using an example the bias-variance trade-off in Machine Learning.(5)

Переглянути це питання

1.3 List FIVE (5) Python Machine Learning libraries.(5)

Переглянути це питання

1.2 Describe when you would prefer median imputation instead of mean imputation.(5)

Переглянути це питання

1.1 Using examples differentiate between classification and regression.(5)

Переглянути це питання

Хочете миттєвий доступ до всіх перевірених відповідей на learning.richfield.ac.za?

Отримайте необмежений доступ до відповідей на екзаменаційні питання - встановіть розширення Crowdly зараз!