logo

Crowdly

\mathbb{r}(t) = (x(t), y(t), z(t)) parametrizazioaz definitzen den C ku...

✅ Перевірена відповідь на це питання доступна нижче. Наші рішення, перевірені спільнотою, допомагають краще зрозуміти матеріал.

 \mathbb{r}(t) = (x(t), y(t), z(t)) \mathbb{r}(t) = (x(t), y(t), z(t)) parametrizazioaz definitzen den  C C kurba baten gaineko lerro-integrala honela definitzen da:

 \int_{C}{\overrightarrow{V}\cdot d\overright{\mathbb{r}} = \int_{a}^{b} \overrightarrow{V}(\mathbb{r}(t))\cdot \mathbb{r}'(t)dt} \int_{C}{\overrightarrow{V}\cdot d\overright{\mathbb{r}} = \int_{a}^{b} \overrightarrow{V}(\mathbb{r}(t))\cdot \mathbb{r}'(t)dt}

non a, b \in\mathbb{R}a, b \in\mathbb{R} puntuak tt parametrizazioko aldagaiaren definizio-eremuaren mugak diren, eta  \overrightarrow{V} \overrightarrow{V} kurbako puntu guztietan jarraitua den bektore-eremu bat den. Integral honek,  \overrightarrow{V} \overrightarrow{V} -k, masa bat C C kurba zeharkatzean egituen duen lanaren balioa ematen digu eta ibilbidearen norabidearen menpekoa da.

Більше питань подібних до цього

Хочете миттєвий доступ до всіх перевірених відповідей на egela.ehu.eus?

Отримайте необмежений доступ до відповідей на екзаменаційні питання - встановіть розширення Crowdly зараз!