Шукаєте відповіді та рішення тестів для Sala común de la asignatura Tecnología de Computadores. Plan 2023 (2024-25, Grado en Ing del Software, Informática, de Computadores y Doble Grado Matemáticas + Informática, Todos los grupos)? Перегляньте нашу велику колекцію перевірених відповідей для Sala común de la asignatura Tecnología de Computadores. Plan 2023 (2024-25, Grado en Ing del Software, Informática, de Computadores y Doble Grado Matemáticas + Informática, Todos los grupos) в informatica.cv.uma.es.
Отримайте миттєвий доступ до точних відповідей та детальних пояснень для питань вашого курсу. Наша платформа, створена спільнотою, допомагає студентам досягати успіху!
Give the upper limit of the range of values of integer representation two's complement with 7 bits? (highest integer value representable in decimal)
We consider the division with rest algorithm for unsigned integers in 4 bits.
You give the values of A[4:0] and Q[3:0] and the followed operation in each iteration.
Dividend (numerator) = 1510 (11112) / Divisor (denominator) (M) = 710 (01112)
In each row, you provide the values of A[4:0] and Q[3:0] in binary wih all needed bits just after the opeartion given in the field "Operation in the same row.
If the operation is "No operation", you copy the values pf A[4:0] and Q[3:0] of the former row as they did not change.
|
Iteración | A[4:0] | Q[3:0] | Operation |
2 | 2 | Initialization | |
0 | 2 | 2 | |
2 | 2 | | |
2 | 2 | | |
2 | 2 | | |
1 | 2 | 2 | |
2 | 2 | | |
2 | 2 | | |
2 | 2 | | |
2 | 2 | 2 | |
2 | 2 | | |
2 | 2 | | |
2 | 2 | | |
3 | 2 | 2 | |
2 | 2 | | |
2 | 2 | | |
2 | 2 | |
Quotient in binary, 4 binary digits:
2 and in decimal: 10Rest in binary, 4 binary digits:
2 and in decimal: 10Por favor, responda a todas las partes de la pregunta.Consider the multiplication aalgorithm for C2 multiplication based on add and shift for operands of 4 bits.
Give the iterative values of Z[8:4] and Z[3:0] and the performed operation.
X = -510 (10112) * Y = -410 (11002)
Nota:
| In each row, you give the value of Z[8:4] and Z[3:0] in binary with all necessary bits just after the iteration operation.
In the field "Operation" you may also put "No operation" and you copy the values of Z[8:4] and Z[3:0] from the last row to show they do not change.
|
Iteración | Z[8:4] | Z[3:0] | Operation |
2 | 2 | Initialization | |
0 | 2 | 2 | |
2 | 2 | | |
1 | 2 | 2 | |
2 | 2 | | |
2 | 2 | 2 | |
2 | 2 | | |
3 | 2 | 2 | |
2 | 2 | |
After the procedure, give the 8 bits as a result of the multiplication (8 binary digits):
2Give the result in decimal: 10We consider the division with rest algorithm for unsigned integers in 4 bits.
You give the values of A[4:0] and Q[3:0] and the followed operation in each iteration.
Dividend (numerator) = 1510 (11112) / Divisor (denominator) (M) = 710 (01112)
In each row, you provide the values of A[4:0] and Q[3:0] in binary wih all needed bits just after the opeartion given in the field "Operation in the same row.
If the operation is "No operation", you copy the values pf A[4:0] and Q[3:0] of the former row as they did not change.
|
Iteración | A[4:0] | Q[3:0] | Operation |
2 | 2 | Initialization | |
0 | 2 | 2 | |
2 | 2 | | |
2 | 2 | | |
2 | 2 | | |
1 | 2 | 2 | |
2 | 2 | | |
2 | 2 | | |
2 | 2 | | |
2 | 2 | 2 | |
2 | 2 | | |
2 | 2 | | |
2 | 2 | | |
3 | 2 | 2 | |
2 | 2 | | |
2 | 2 | | |
2 | 2 | |
Quotient in binary, 4 binary digits:
2 and in decimal: 10Rest in binary, 4 binary digits:
2 and in decimal: 10Given a bit string which represents a real number in IEEE 754 single precicion:
SCCCCCCCCMMMMMMMMMMMMMMMMMMMMMMM
01111110110100000000000000000000- Mantisa: Sign-Magnitud S: Bit 31 -signM: Bits 22:0 - normalised mantissa (1.M with implicit 1 in the representation)- Exponent: Excess 127C: Bits 30:23 - characteristic (exponent represented in excess 127)The represented value is given by V = (-1)S x 1.M x 2C-127 if it is not a special case.
Determine the represented real value in decimal with at most 5 significative digits (different from 0). For instance use decimal notation with a decimal comma, e.g. -2,625 or you can also use the scientific notation, e.g. -5,5432e-23.
Given a bit string which represents a real number in IEEE 754 single precicion:
SCCCCCCCCMMMMMMMMMMMMMMMMMMMMMMM
01111110110100000000000000000000- Mantisa: Sign-Magnitud S: Bit 31 -signM: Bits 22:0 - normalised mantissa (1.M with implicit 1 in the representation)- Exponent: Excess 127C: Bits 20:23 - characteristic (exponent represented in excess 127)The represented value is given by V = (-1)S x 1.M x 2C-127 if it is not a special case.
Determine the represented real value in decimal with at most 5 significative digits (different from 0). For instance use decimal notation with a decimal comma, e.g. -2,625 or you can also use the scientific notation, e.g. -5,5432e-23.
A number is represented in floating point according to the following format
S CCCC MMMMMM1 0100 011100- Mantisa: Sign-MagnitudS: Bit 10 signM: Bits 5:0 - mantisa normalized as 1.M, so using an implicit 1 - Exponent: Exces 8C: Bits 9:6 - characteristic for the exponent in exces 8)
So the represented number is V = (-1)S x 1.M x 2C-8
Give the represented number in decimal considering only 5 significative digits (nonzero) Example 1.2345
Given the simple precision IEEE 754 representation:
represent real number 1,4 in this format
Given the single precision IEEE 754 representation:
SCCCCCCCCMMMMMMMMMMMMMMMMMMMMMMM
11000001111100000000000000000000- Mantisa: Signed-MagnitudS: Bit 31 -signM: Bits 30:23 - fractional normalized mantisa (1.M with implicit 1)- Exponent: Excess 127C: Bits 22:0 - characeristic representing the exponent in excess 127The represented value is given by = (-1)S x 1.M x 2C-127 as long as we are not dealing with a special case.
Determine the represented number in decimal notation. In the nswer, consider only 5 significative digits, i.e. digits that differ from 0.
Отримайте необмежений доступ до відповідей на екзаменаційні питання - встановіть розширення Crowdly зараз!