logo

Crowdly

Lengkapi setiap bagian berikut terkait penutup ( closure ) masing-masing relasi ...

✅ The verified answer to this question is available below. Our community-reviewed solutions help you understand the material better.

Lengkapi setiap bagian berikut terkait penutup (closure) masing-masing relasi yang diberikan.

  1. Penutup refleksif dari R_1=\{(x,y) \in \mathbb {Z}\times \mathbb {Z} | x \neq y\}R_1=\{(x,y) \in \mathbb {Z}\times \mathbb {Z} | x \neq y\} adalah R_1\cup SR_1\cup S, dengan S=\{(x,y) \in \mathbb {Z}\times \mathbb {Z} | S=\{(x,y) \in \mathbb {Z}\times \mathbb {Z} | \}\}. Penutup refleksif R_1R_1 juga dapat dinyatakan dalam sebuah himpunan \{(x,y) \in \mathbb {Z}\times \mathbb {Z} | x \neq y \{(x,y) \in \mathbb {Z}\times \mathbb {Z} | x \neq y
    \}\}
  2. Penutup simetri dari R=\{(x,y) \in \mathbb {Z}\times \mathbb {Z} | y = x\cdot c, c \in \mathbb {Z} \}R=\{(x,y) \in \mathbb {Z}\times \mathbb {Z} | y = x\cdot c, c \in \mathbb {Z} \} dapat dinyatakan dalam sebuah himpunan \{(x,y)\in \mathbb {Z}\times \mathbb {Z} | (y=x\cdot c, c\in \mathbb {Z}) \vee (\{(x,y)\in \mathbb {Z}\times \mathbb {Z} | (y=x\cdot c, c\in \mathbb {Z}) \vee ( ,d \in \mathbb {Z})\},d \in \mathbb {Z})\}

Update untuk penutup simetri relasi RR:

\{(x,y)\in \mathbb {Z}\times \mathbb {Z} | y=x\cdot c \vee x=y\cdot c, \exists c \in \mathbb{Z} \} \{(x,y)\in \mathbb {Z}\times \mathbb {Z} | y=x\cdot c \vee x=y\cdot c, \exists c \in \mathbb{Z} \}

More questions like this

Want instant access to all verified answers on scele.cs.ui.ac.id?

Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!