Looking for Statistics and Data Science / Statistiek en Datawetenskap - 188 test answers and solutions? Browse our comprehensive collection of verified answers for Statistics and Data Science / Statistiek en Datawetenskap - 188 at emslearn.sun.ac.za.
Get instant access to accurate answers and detailed explanations for your course questions. Our community-driven platform helps students succeed!
Die bestuurder van ʼn supermark bestudeer die hoeveelheid tyd wat nodig is vir ʼn klant om deur ʼn kassier gehelp te word. Hy bepaal dat die tyd wat klante by die betaalpunte spandeer eksponensiaal verdeel is met ʼn gemiddelde van ses minute. Die proporsie van klante wat meer as tien minute benodig om te betaal, is / The manager of a supermarket tracked the amount of time needed for customers to be served by the cashier. He determined that the checkout times are exponentially distributed with a mean of six minutes. The proportion of customers who require more than ten minutes to check out, is
Dit word gegee dat X normaal verdeel is met gemiddeld μ = 47.3 en variansie σ² = 36. / It is given that X is normally distributed with mean μ = 47.3 and variance σ² = 36.
Die waarde van wat so is dat 70% van alle -waardes groter as dit is, is / The value of that is such that 70% of all -values is larger than it, is
Dit word gegee dat X normaal verdeel is met gemiddeld μ = 27.7 en variansie σ² = 25. / It is given that X is normally distributed with mean μ = 27.7 and variance σ² = 25.
Die mediaan van X is / The median of X is
Die aankomstyd tussen opeenvolgende motors by ’n spesifieke kruising volg ’n eksponensiaalverdeling met ’n gemiddeld van twaalf sekondes. / The time between arrivals of two consecutive vehicles at a particular intersection follows an exponential distribution with a mean of twelve seconds.
Bereken die variansie van die aankomstyd tussen twee opeenvolgende motors. / Calculate the variance of the arrival time between two consecutive vehicles.
’n Bloemis maak aflewerings tussen 13:00 en 17:00 daagliks. Aanvaar dat die afleweringstye ’n kontinue uniforme verdeling volg. Die persentasie aflewerings wat na 16:00 gemaak word is / A florist makes deliveries between 13:00 and 17:00 daily. Assume the delivery times follow the continuous uniform distribution. The percentage deliveries which are made after 16:00 is
’n Lugredery beweer ’n vlugtyd van 120 minute tussen Kaapstad en Johannesburg. Veronderstel die vlugtye volg ’n uniforme verdeling tussen 110 minute en 140 minute en dat vliegtuie altyd op die geskeduleerde tyd vertrek. / An airline company claims a flight time of 120 minutes between Cape Town and Johannesburg. Suppose the flight times are uniformly distributed between 110 minutes and 140 minutes and that airplanes always depart on the scheduled time.
Bereken die waarskynlikheid dat ʼn vlug wat laat aankom, nie meer as vyf minute laat is nie. Neem aan dat ʼn vlug wat langer as 120 minute duur as laat beskou word. / Calculate the probability that the flight that arrives late will be no more than five minutes late. Assume that a flight that takes longer than 120 minutes is considered to be late.
Die verwagte waarde en standaardafwyking van die kontinue uniforme verdeling ( a = 4; b = 11) is / The expected value and standard deviation of the continuous uniform distribution ( a = 4; b = 11) are
Dit word gegee dat X normaal verdeel is met gemiddeld μ = 47.3 en variansie σ² = 36. / It is given that X is normally distributed with mean μ = 47.3 and variance σ² = 36.
Die modus is gelyk aan / The mode equals
Dit word gegee dat X normaal verdeel is met gemiddeld μ = 27.7 en variansie σ² = 25. / It is given that X is normally distributed with mean μ = 27.7 and variance σ² = 25.
Bereken die waarde van die derde kwartiel. / Calculate the value of the third quartile.
Indien X normaal verdeel is met μ = 15 en σ = 3, is P(X = 15) gelyk aan / If X has the normal distribution with μ = 15 and σ = 3, then P(X = 15) equals
Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!