logo

Crowdly

FIT1058 Foundations of computing - S1 2025

Шукаєте відповіді та рішення тестів для FIT1058 Foundations of computing - S1 2025? Перегляньте нашу велику колекцію перевірених відповідей для FIT1058 Foundations of computing - S1 2025 в learning.monash.edu.

Отримайте миттєвий доступ до точних відповідей та детальних пояснень для питань вашого курсу. Наша платформа, створена спільнотою, допомагає студентам досягати успіху!

Which of the following sets of values could easily be modelled using Boolean variables?

0%
0%
0%
Переглянути це питання

Suppose PP and QQ are logical statements.

The statement P \rightarrow QP \rightarrow Q represents the assertion that...:

0%
0%
0%
0%
Переглянути це питання
How would you best categorise the statement in bold text below?

Given that the complement of the union of two sets is the intersection of their complements, it follows also that the complement of the intersection of two sets is the union of their complements.
0%
0%
0%
0%
0%
Переглянути це питання
Which of the following is an example of a Theorem, according to the definition provided in the Week 3 pre-reading?
0%
0%
0%
0%
Переглянути це питання

Consider the following theorem:

The sum of two even integers is also an even integer.

What, if anything, is wrong with the following attempt at proving this theorem?

Proof.

  1. Pick any two even integers, and write them as 2x and 2y.
  2. 2x + 2y can be rewritten as 2(x + y).
  3. Since (x + y)  is the sum of two integers, which is also an integer, multiplying it by 2 must give an even integer. So 2(x + y) is even.
  4. Thus, the sum of two even integers is also even.

0%
0%
0%
0%
Переглянути це питання
Which of the following defines the principle of logical deduction, or modus ponens?
0%
0%
0%
100%
Переглянути це питання

What is an axiom?

0%
100%
0%
0%
Переглянути це питання
You are trying to prove the hypothesis that among a group of three people, Person A has the largest number of pineapples. What, if anything, is wrong with the following attempt at proving this?

Proof.

  1. Person A and Person C both have an even number of pineapples, but Person B has an odd number of pineapples.
  2. The person with the most pineapples in the group has eight pineapples.
  3. Person A has more pineapples than Person C.
100%
0%
0%
0%
Переглянути це питання
Consider the following theorem:

The sum of two positive even integers is also a positive even integer.

What, if anything, is wrong with the following attempt at proving this theorem?

Proof.

Start by choosing the smallest two positive even integers, 2 and 2. 2 + 2 = 4, which is also even. Then try 2 + 4 = 6, which is also even. Then 2 + 10, 2 + 12, etc., all of which add up to even totals. Then try adding 4 + 4 = 8, 4 + 6 = 10, and so on. All the resulting sums, for any two pairs of positive even integers, add up to an even integer. Therefore, the sum of two positive even integers is also a positive even integer.
0%
100%
0%
0%
0%
Переглянути це питання

What, if anything, is wrong with the following sequence of proof steps?

  1. We already know that if A and B are both true, then C is also true.
  2. Our initial assumptions state that A is true, but B is false.
  3. Therefore, C is false.

100%
0%
0%
0%
Переглянути це питання

Хочете миттєвий доступ до всіх перевірених відповідей на learning.monash.edu?

Отримайте необмежений доступ до відповідей на екзаменаційні питання - встановіть розширення Crowdly зараз!