✅ The verified answer to this question is available below. Our community-reviewed solutions help you understand the material better.
Considere a seguinte função f:\mathbb{R}^2 \rightarrow \mathbb{R} definida por
f(x,y)=\left\{\begin{matrix} \displaystyle \frac{5xy^2}{x^2+y^2}, & (x,y)\neq (0,0)\\ 0, & (x,y)= (0,0)\end{matrix} \right..
A derivada direcional de f na direção do vetor
\displaystyle \vec{u}=\left(\frac{2\sqrt{5}}{5},\frac{\sqrt{5}}{5}\right)no ponto
(0,0) é
Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!