logo

Crowdly

Izan bedi D \subset \mathbb{R}^2 eremu itxi bat, eta f: D \longrightarro...

✅ The verified answer to this question is available below. Our community-reviewed solutions help you understand the material better.

Izan bedi  D \subset \mathbb{R}^2 D \subset \mathbb{R}^2 eremu itxi bat, eta  f: D \longrightarrow \mathbb{R} f: D \longrightarrow \mathbb{R} funtzioa,  \forall (x,y) \in D \forall (x,y) \in D definitua.  f f funtzioak  D D eremuko dentsitatea adierazten badu, bere grabitate zentroa, hurrengo moduan definitzen da:

 GZ = (x_{c}, y_{c}) = \left( \frac{\int\int_{D} x f(x,y) dxdx}{\int\int_{D} f(x,y) dxdy}, \frac{\int\int_{D} y f(x,y) dxdx}{\int\int_{D} f(x,y) dxdy}\right). GZ = (x_{c}, y_{c}) = \left( \frac{\int\int_{D} x f(x,y) dxdx}{\int\int_{D} f(x,y) dxdy}, \frac{\int\int_{D} y f(x,y) dxdx}{\int\int_{D} f(x,y) dxdy}\right).

Esan ezazu hurrengo inplikazioa egia ala gezurra den:

 f f jarraitua bada  D D -ko edozein puntutan, orduan,  GZ \in D GZ \in D

More questions like this

Want instant access to all verified answers on egela.ehu.eus?

Get Unlimited Answers To Exam Questions - Install Crowdly Extension Now!